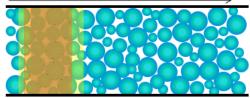


Will LC-MS/MS become the workhorse in environmental laboratories? Its applications for protecting public health.

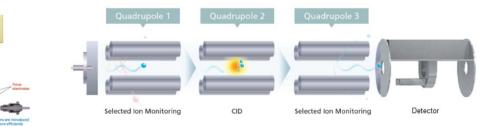
Ruth Marfil-Vega, PhD

Topics for today's presentation: LC-MS/MS

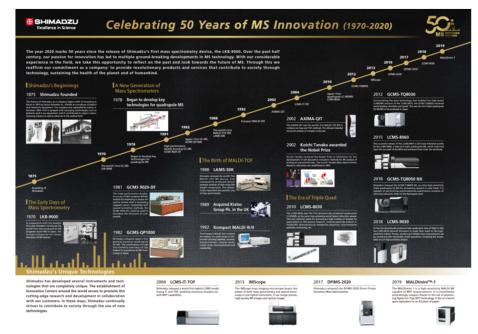
- 1. Presence in Environmental Labs.
- 2. Applications for protecting public health.
- 3. Myths about LC-MS/MS.


() SHIMADZU

What is LC-MS/MS?


LC-MS/MS: Liquid Chromatography Tandem Mass Spectrometry

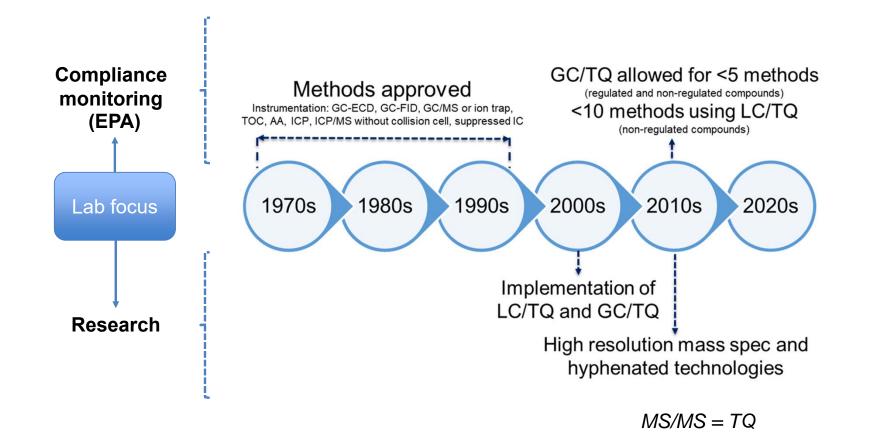
Sample bands separate with flow



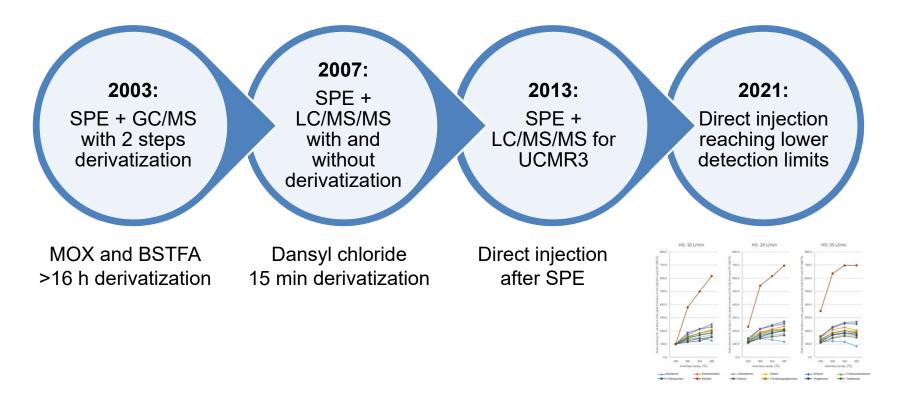
Injection

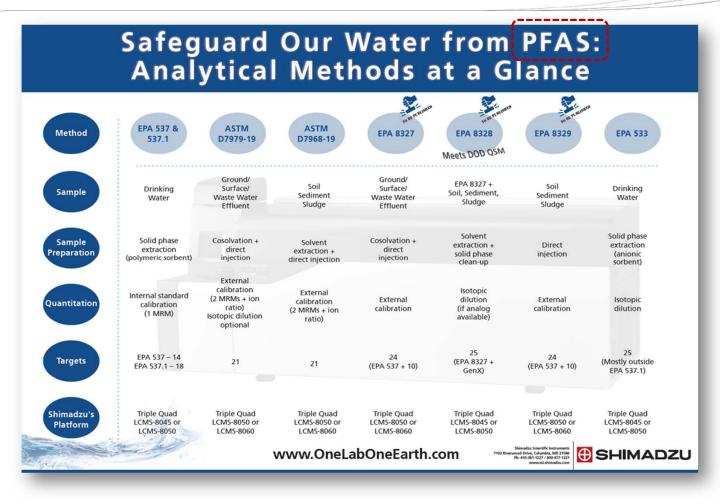
(LC)MS/MS History

Table I. Historical Developm	ents in MS	
Investigator(s)	Year	Contribution
Thomson	1899–1911	First mass spectrometer
Dempster	1918	Electron ionization and magnetic focusing
Aston	1919	Atomic weights using MS
Stephens	1946	Time-of-flight mass analysis
Hipple, Sommer, and Thomas	1949	Ion cyclotron resonance
Johnson and Nier	1953	
Paul and Steinwedel	1953	Quadrupole analyzers
Beynon	1956	High-resolution MS
Biemann, Cone, Webster, and Arsenault	1966	Peptide sequencing
Munson and Field	1966	Chemical ionization
Dole	1968	Electrospray ionization
Beckey	1969	Field desorption MS of organic molecules
MacFarlane and Torgerson	1974	Plasma desorption MS
Comisarow and Marshall	1974	FT-ICR MS
Yost and Enke	1978	Triple quadrupole MS
Barber	1981	Fast atom bombardment (FAB)
Tanaka, Karas, and Hillenkamp	1983	Matrix-assisted laser desorption/ionization
Fenn	1984	ESI on biomolecules
Chowdhury, Katta, and Chait	1990	Protein conformational changes with ESI MS
Mann and Wilm	1991	MicroESI
Ganem, Li, and Henion Chait and Katta	1991	Noncovalent complexes with ESI MS
Pieles, Zurcher, Schär, and Moser	1993	Oligonucleotide ladder sequencing
Henzel, Billeci, Stults, Wong, Grimley, and Watanabe	1993	Protein mass mapping
Siuzdak, Bothner, Fuerstenau, and Benner	1996–2001	Intact viral analysis


LC-MS/MS is a mature technique that has been widely commercialized for several decades.

https://www.shimadzu.com/an/news-events/celebrating_50_years/history.html


Chemistry Chronicles: A Mass Spec Timeline (https://masspec.scripps.edu/research/pdf/90_art.pdf)



A real life example

Analysis of estrogens in water

Applications for protecting public health: PFAS

Applications for protecting public health: Aquatic toxins

Cyanotoxins (EPA 544 and EPA 545)

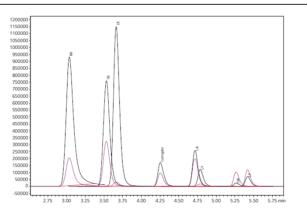


Figure 1. TIC of 100 ng/mL standard displaying target and reference ions for all compounds.

	Ourset MADA	Cal range	r ²	Lake Erie	Spl (ng/mL)	Lake Erie Spl (ng/mL)		
Microcystin	Quant MRM	ng/mL	1-	Spike	Calc amt	Spike	Calc amt	
RR	519.90>135.15	0.1 - 100	0.9915	1	0.937	50	49.3	
YR	523.40>135.10	0.1 - 100	0.9993	1	1.012	50	48.2	
LR	498.40>135.10	0.1 - 100	0.9994	1	0.993	50	48.3	
LA	910.40>776.25	0.1 - 100	0.9977	1	0.951	50	45.6	
LY	1002.50>135.25	0.5 - 100	0.9969	1	0.913	50	45.6	
LW	1025.50>135.20	0.5 - 100	0.9979	1	0.894	50	45.4	
LF	986.50>478.30	0.5 - 100	0.9985	1	0.943	50	45.4	

Marine Toxins

Paralytic Shellfish Poisoning	Diarrheic Shellfish Poisoning	Ciguatera Fish Poisoning
(PSP)	(DSP)	(CFP)
Serious effects.	Diarrhea and/or vomiting.	Fatal toxic symptoms
Fatal toxic symptoms.	Not so serious conditions.	(in the limited area)
.C-MS/MS in Japan &EU	MBA in Japan Fluorescence HPLC method in addition to MBA in EU and the USA (AOAC 2005.06 & 2011.02)	Review of regulatory frameworks
OA:0.16 mg OA eq/ kg *1.	4 MU/g as MBA STX 0.8 mg STX eq /kg *1 (as 2 HCl)	

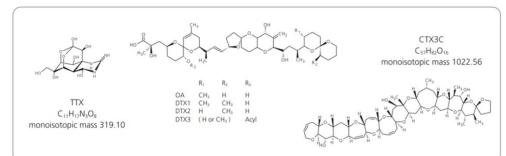
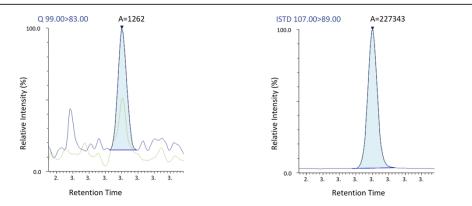
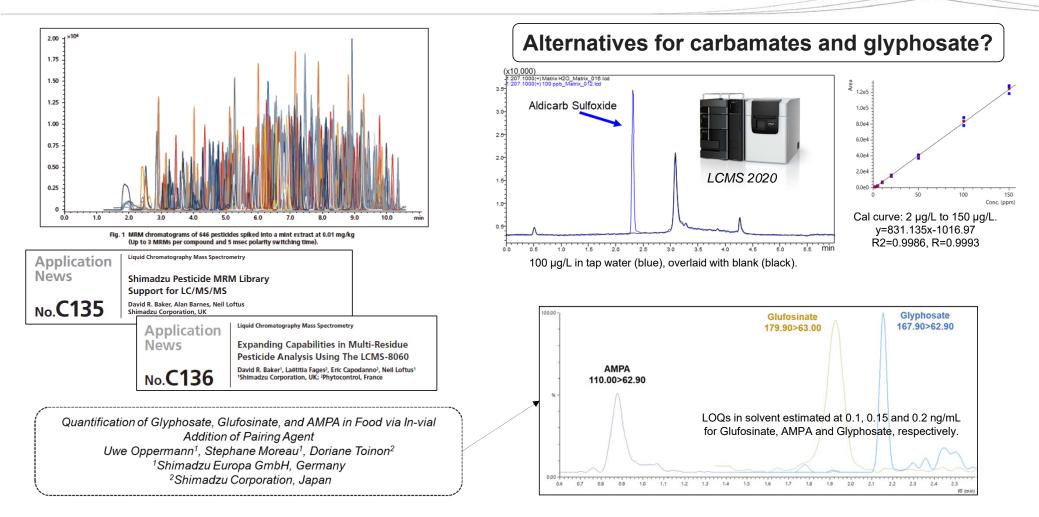



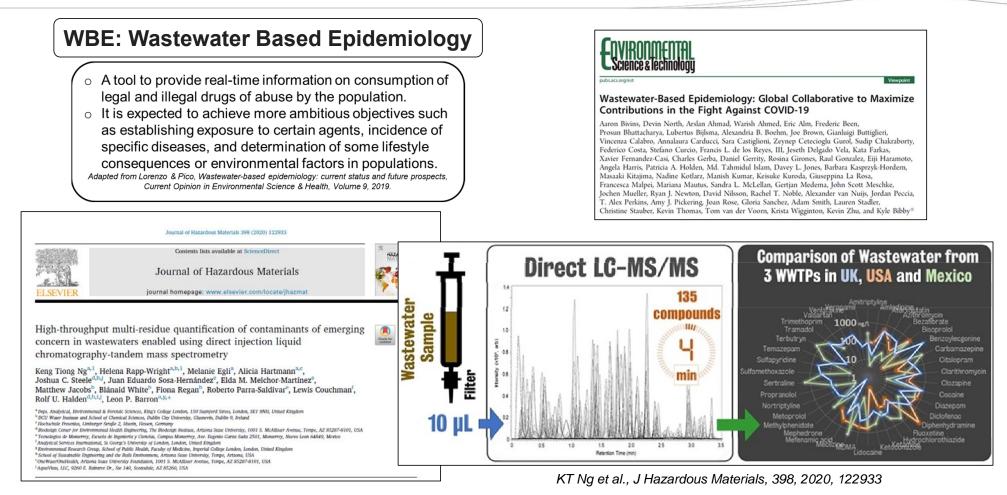
Figure 1. Structure of marine toxins

Applications for protecting public health: Perchlorate

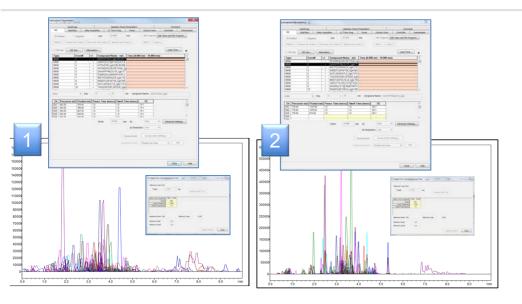
EPA 6850: Perchlorate in Water, Soils and Solid Wastes


Robert English¹, Kristin Neir² ¹Shimadzu Scientific Instruments ²ALS Global, Houston, TX, USA

Validation of modified method EPA 6850 for analysis of perchlorate in both nonpotable water and soil samples. The implemented modifications were within those allowed by EPA's guidelines.

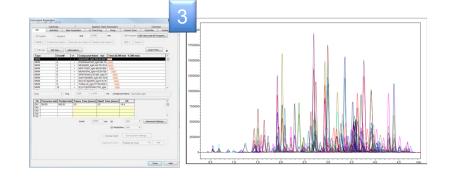

Chromatogram of perchlorate at 50 ppt (lowest concentration in calibration curve) using optimized conditions.

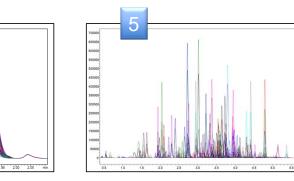
		Samples					Theor	retical	Mean	Mean							
	А	В	С	D	E	F	G	Value		Value	Recovery	Std Dev	MDLc	MDLr	RSD	LOD	
Soil (ug/kg)	0.915	0.774 1	1.067	0.993	0.947	1.015	1.015	1.0		0.96	96%	0.10%	0.302	0.300	10.01%	1.2	
Water (ug/L)	0.123	0.128 0	0.103	0.098	0.106	0.116	0.124	0.	.1	0.11	114%	0.01%	0.036	0.036	10.04%	0.144	
Perchlorate	Spiked	San	nple	le Sample		Sample	e Sam	Avg		Std Dev Precisi	Precision	sion Recov	ery	Precision		Recovery	
	Value	1	1	2		3	4	4						Limit	Lir	Limits	
Soil (ug/kg)	100	88	3.2	88.	.4	88.6	8	88 88.3		0.25	0.3	88.30)% ±15		85-	115	
Water (ug/L)	10	8.	83	8.9	7	8.9	8.	86	8.89	0.06	0.7	88.90	0%	±15	85-	115	


Applications for protecting public health: Pesticides



Applications for protecting public health: WBE

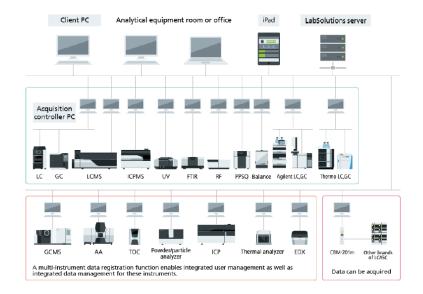

Myths about LC/MS/MS - Method development

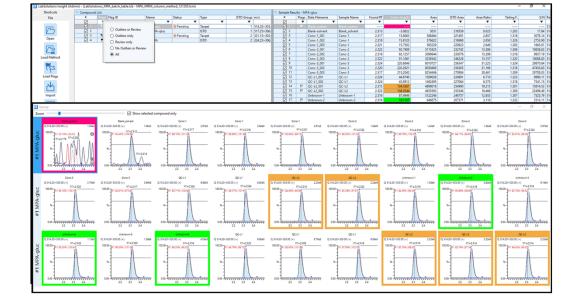


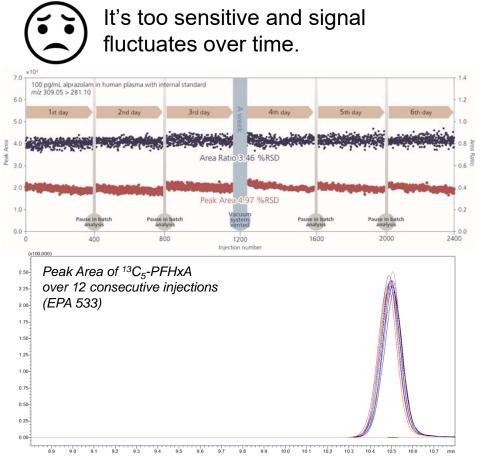
Software tools help with the creation of MRMs.

- 1. Initial MRMs screen
- 2. MRMs selection based on RT and intensity
- 3. Confirmation scheduled MRMs
- 4. Collision Energy Optimization
- 5. Method confirmation

Myths about LC/MS/MS – Data Processing




It's tedious and LC/MS/MS cannot be connected to CDS.


Workflows developed for automating data process and review and increasing sample throughput.

Connectivity to same software platform as other instruments. available.

Myths about LC/MS/MS – Sensitivity

Sensitivity allows for achieving lower detection limits. Good laboratory practices and the use of internal standards help with maintaining robustness.

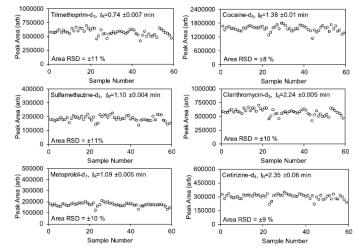
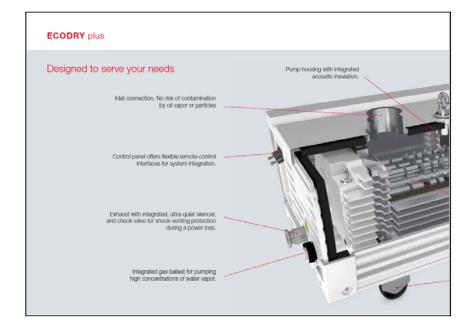
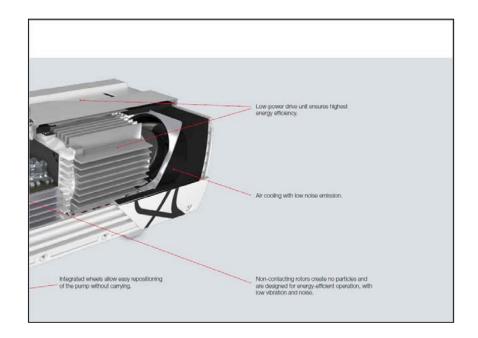


Fig. 3. Peak area and retention time stability for selected SIL-IS over a sequence of n = 59 spiked London wastewater samples (500 ng L⁻¹) and measured using direct LC-MS/MS analysis over a total batch analysis time of 6.4 h.

KT Ng et al., J Hazardous Materials, 398, 2020, 122933

() SHIMADZU

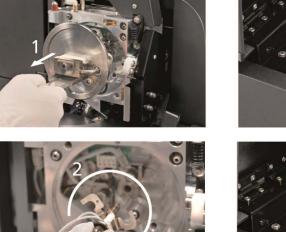

Myths about LC/MS/MS – Vacuum

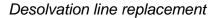


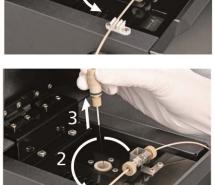
Vacuum systems are scary!

Turbo pumps rarely fail. Newer dry pumps are easier to maintain (and make less noise!).

Myths about LC/MS/MS – Maintenance


I need to break vacuum to maintain the system.




Routine maintenance can be done by the analyst without the need to break vacuum.

Source cleaning

ESI Capillary source replacement

Take home messages

- LC-MS/MS are common instruments in environmental labs.
- Broad range of applications are suitable for LC-MS/MS analysis.
 Productivity is increased.
- Good laboratory practices and latest technology developments ease operations.

() SHIMADZU

Visit OneLabOneEarth.com

Ruth Marfil-Vega, PhD rmmarfilvega@shimadzu.com